Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Protein Expr Purif ; 210: 106295, 2023 10.
Article in English | MEDLINE | ID: covidwho-2313951

ABSTRACT

The human cell line HEK293 is one of the preferred choices for manufacturing therapeutic proteins and viral vectors for human applications. Despite its increased use, it is still considered in disadvantage in production aspects compared to cell lines such as the CHO cell line. We provide here a simple workflow for the rapid generation of stably transfected HEK293 cells expressing an engineered variant of the SARS-CoV-2 Receptor Binding Domain (RBD) carrying a coupling domain for linkage to VLPs through a bacterial transpeptidase-sortase (SrtA). To generate stable suspension cells expressing the RBD-SrtA, a single two plasmids transfection was performed, with hygromycin selection. The suspension HEK293 were grown in adherent conditions, with 20% FBS supplementation. These transfection conditions increased cell survival, allowing the selection of stable cell pools, which was otherwise not possible with standard procedures in suspension. Six pools were isolated, expanded and successfully re-adapted to suspension with a gradual increase of serum-free media and agitation. The complete process lasted four weeks. Stable expression with viability over 98% was verified for over two months in culture, with cell passages every 4-5 days. With process intensification, RBD-SrtA yields reached 6.4 µg/mL and 13.4 µg/mL in fed-batch and perfusion-like cultures, respectively. RBD-SrtA was further produced in fed-batch stirred tank 1L-bioreactors, reaching 10-fold higher yields than perfusion flasks. The trimeric antigen displayed the conformational structure and functionality expected. This work provides a series of steps for stable cell pool development using suspension HEK293 cells aimed at the scalable production of recombinant proteins.


Subject(s)
COVID-19 , Humans , HEK293 Cells , SARS-CoV-2 , Bioreactors , Recombinant Proteins/genetics
2.
Vaccines (Basel) ; 11(4)2023 Apr 14.
Article in English | MEDLINE | ID: covidwho-2306078

ABSTRACT

The administration of viral vectored vaccines remains one of the most effective ways to respond to the ongoing novel coronavirus disease 2019 (COVID-19) pandemic. However, pre-existing immunity to the viral vector hinders its potency, resulting in a limited choice of viral vectors. Moreover, the basic batch mode of manufacturing vectored vaccines does not allow one to cost-effectively meet the global demand for billions of doses per year. To date, the exposure of humans to VSV infection has been limited. Therefore, a recombinant vesicular stomatitis virus (rVSV), which expresses the spike protein of SARS-CoV-2, was selected as the vector. To determine the operating upstream process conditions for the most effective production of an rVSV-SARS-CoV-2 candidate vaccine, a set of critical process parameters was evaluated in an Ambr 250 modular system, whereas in the downstream process, a streamlined process that included DNase treatment, clarification, and a membrane-based anion exchange chromatography was developed. The design of the experiment was performed with the aim to obtain the optimal conditions for the chromatography step. Additionally, a continuous mode manufacturing process integrating upstream and downstream steps was evaluated. rVSV-SARS-CoV-2 was continuously harvested from the perfusion bioreactor and purified by membrane chromatography in three columns that were operated sequentially under a counter-current mode. Compared with the batch mode, the continuous mode of operation had a 2.55-fold increase in space-time yield and a reduction in the processing time by half. The integrated continuous manufacturing process provides a reference for the efficient production of other viral vectored vaccines.

3.
Nanomedicine ; 44: 102584, 2022 08.
Article in English | MEDLINE | ID: covidwho-1937030

ABSTRACT

A vaccine candidate to SARS-CoV-2 was constructed by coupling the viral receptor binding domain (RBD) to the surface of the papaya mosaic virus (PapMV) nanoparticle (nano) to generate the RBD-PapMV vaccine. Immunization of mice with the coupled RBD-PapMV vaccine enhanced the antibody titers and the T-cell mediated immune response directed to the RBD antigen as compared to immunization with the non-coupled vaccine formulation (RBD + PapMV nano). Anti-RBD antibodies, generated in vaccinated animals, neutralized SARS-CoV-2 infection in vitro against the ancestral, Delta and the Omicron variants. At last, immunization of mice susceptible to the infection by SARS-CoV-2 (K18-hACE2 transgenic mice) with the RBD-PapMV vaccine induced protection to the ancestral SARS-CoV-2 infectious challenge. The induction of the broad neutralization against SARS-CoV-2 variants induced by the RBD-PapMV vaccine demonstrate the potential of the PapMV vaccine platform in the development of efficient vaccines against viral respiratory infections.


Subject(s)
COVID-19 , Nanoparticles , Animals , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Mice , Mice, Inbred BALB C , Potexvirus , SARS-CoV-2
4.
Vaccines (Basel) ; 9(11)2021 Nov 16.
Article in English | MEDLINE | ID: covidwho-1524216

ABSTRACT

The ongoing COVID-19 pandemic drew global attention to infectious diseases, attracting numerous resources for development of pandemic preparedness plans and vaccine platforms-technologies with robust manufacturing processes that can quickly be pivoted to target emerging diseases. Newcastle Disease Virus (NDV) has been studied as a viral vector for human and veterinary vaccines, but its production relies heavily on embryonated chicken eggs, with very few studies producing NDV in cell culture. Here, NDV is produced in suspension Vero cells, and analytical assays (TCID50 and ddPCR) are developed to quantify infectious and total viral titer. NDV-GFP and NDV-FLS (SARS-CoV-2 full-length spike protein) constructs were adapted to replicate in Vero and HEK293 suspension cultures using serum-free media, while fine-tuning parameters such as MOI, temperature, and trypsin concentration. Shake flask productions with Vero cells resulted in infectious titers of 1.07 × 108 TCID50/mL for NDV-GFP and 1.33 × 108 TCID50/mL for NDV-FLS. Production in 1 L batch bioreactors also resulted in high titers in culture supernatants, reaching 2.37 × 108 TCID50/mL for NDV-GFP and 3.16 × 107 TCID50/mL for NDV-FLS. This shows effective NDV production in cell culture, building the basis for a scalable vectored-vaccine manufacturing process that can be applied to different targets.

5.
Analyst ; 146(15): 4905-4917, 2021 Jul 26.
Article in English | MEDLINE | ID: covidwho-1305374

ABSTRACT

We report on the development of surface plasmon resonance (SPR) sensors and matching ELISAs for the detection of nucleocapsid and spike antibodies specific against the novel coronavirus 2019 (SARS-CoV-2) in human serum, plasma and dried blood spots (DBS). When exposed to SARS-CoV-2 or a vaccine against SARS-CoV-2, the immune system responds by expressing antibodies at levels that can be detected and monitored to identify the fraction of the population potentially immunized against SARS-CoV-2 and support efforts to deploy a vaccine strategically. A SPR sensor coated with a peptide monolayer and functionalized with various sources of SARS-CoV-2 recombinant proteins expressed in different cell lines detected human anti-SARS-CoV-2 IgG antibodies in clinical samples. Nucleocapsid expressed in different cell lines did not significantly change the sensitivity of the assays, whereas the use of a CHO cell line to express spike ectodomain led to excellent performance. This bioassay was performed on a portable SPR instrument capable of measuring 4 biological samples within 30 minutes of sample/sensor contact and the chip could be regenerated at least 9 times. Multi-site validation was then performed with in-house and commercial ELISA, which revealed excellent cross-correlations with Pearson's coefficients exceeding 0.85 in all cases, for measurements in DBS and plasma. This strategy paves the way to point-of-care and rapid testing for antibodies in the context of viral infection and vaccine efficacy monitoring.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19 Vaccines , Enzyme-Linked Immunosorbent Assay , Humans , Immunoglobulin G , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus , Surface Plasmon Resonance
6.
Vaccines (Basel) ; 8(4)2020 Nov 04.
Article in English | MEDLINE | ID: covidwho-908955

ABSTRACT

Vaccine design strategies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are focused on the Spike protein or its subunits as the main antigen target of neutralizing antibodies. In this work, we propose rapid production methods of an extended segment of the Spike Receptor Binding Domain (RBD) in HEK293SF cells cultured in suspension, in serum-free media, as a major component of a COVID-19 subunit vaccine under development. The expression of RBD, engineered with a sortase-recognition motif for protein-based carrier coupling, was achieved at high yields by plasmid transient transfection or human type-5-adenoviral infection of the cells, in a period of only two and three weeks, respectively. Both production methods were evaluated in 3L-controlled bioreactors with upstream and downstream bioprocess improvements, resulting in a product recovery with over 95% purity. Adenoviral infection led to over 100 µg/mL of RBD in culture supernatants, which was around 7-fold higher than levels obtained in transfected cultures. The monosaccharide and sialic acid content was similar in the RBD protein from the two production approaches. It also exhibited a proper conformational structure as recognized by monoclonal antibodies directed against key native Spike epitopes. Efficient direct binding to ACE2 was also demonstrated at similar levels in RBD obtained from both methods and from different production lots. Overall, we provide bioprocess-related data for the rapid, scalable manufacturing of low cost RBD based vaccines against SARS-CoV-2, with the added value of making a functional antigen available to support further research on uncovering mechanisms of virus binding and entry as well as screening for potential COVID-19 therapeutics.

SELECTION OF CITATIONS
SEARCH DETAIL